Geometric Aspects of Mirror Symmetry

نویسنده

  • DAVID R. MORRISON
چکیده

The geometric aspects of mirror symmetry are reviewed, with an eye towards future developments. Given a mirror pair (X, Y ) of Calabi–Yau threefolds, the best-understood mirror statements relate certain small corners of the moduli spaces of X and of Y . We will indicate how one might go beyond such statements, and relate the moduli spaces more globally. In fact, in the boldest version of mirror symmetry (the Strominger–Yau–Zaslow conjecture), the Calabi–Yau threefolds X and Y should be directly related to each other through a very geometric construction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On algebraic geometric and computer algebra aspects of mirror symmetry

We survey some algebraic geometric aspects of mirror symmetry and duality in string theory. Some applications of computer algebra to algebraic geometry and string theory are shortly reviewed.

متن کامل

Geometric Aspects of Mirror Symmetry (with SYZ for Rigid CY manifolds)

In this article we discuss the geometry of moduli spaces of (1) flat bundles over special Lagrangian submanifolds and (2) deformed HermitianYang-Mills bundles over complex submanifolds in Calabi-Yau manifolds. These moduli spaces reflect the geometry of the Calabi-Yau itself like a mirror. Strominger, Yau and Zaslow conjecture that the mirror CalabiYau manifold is such a moduli space and they a...

متن کامل

The Geometry Underlying Mirror Symmetry

The recent result of Strominger, Yau and Zaslow relating mirror symmetry to the quantum field theory notion of T-duality is reinterpreted as providing a way of geometrically characterizing which Calabi–Yau manifolds have mirror partners. The geometric description—that one Calabi–Yau manifold should serve as a compactified, complexified moduli space for special Lagrangian tori on the other Calab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008